Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29.133
Filtrar
1.
BMC Geriatr ; 24(1): 308, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565979

RESUMO

BACKGROUND: The postural control and abdominal muscles' automatic activity were found to be impaired in subjects with low back pain (LBP) during static activities. However, the studies are predominantly conducted on younger adults and a limited number of studies have evaluated abdominal muscles' automatic activity during dynamic standing activities in subjects with LBP. The present study investigated the automatic activity of abdominal muscles during stable and unstable standing postural tasks in older adults with and without LBP. METHODS: Twenty subjects with and 20 subjects without LBP were included. The thickness of the transversus abdominis (TrA), internal oblique (IO), and external oblique (EO) muscles was measured during rest (in supine), static, and dynamic standing postural tasks. To estimate automatic muscle activity, each muscle's thickness during a standing task was normalized to its thickness during the rest. Standing postural tasks were performed using the Biodex Balance System. RESULTS: The mixed-model analysis of variance revealed that task dynamicity significantly affected thickness change only in the TrA muscle (P = 0.02), but the main effect for the group and the interaction were not significantly different (P > 0.05). There were no significant main effects of the group, task dynamicity, or their interaction for the IO and EO muscles (P > 0.05). During dynamic standing, only the TrA muscle in the control group showed greater thickness changes than during the static standing task (P < 0.05). CONCLUSIONS: Standing on a dynamic level increased the automatic activity of the TrA muscle in participants without LBP compared to standing on a static level. Further research is required to investigate the effects of TrA muscle training during standing on dynamic surfaces for the treatment of older adults with LBP.


Assuntos
Dor Lombar , Humanos , Idoso , Dor Lombar/diagnóstico , Estudos Transversais , Contração Muscular/fisiologia , Músculos Abdominais/diagnóstico por imagem , Músculos Abdominais/fisiologia , Posição Ortostática , Ultrassonografia
2.
FASEB J ; 38(7): e23604, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38591106

RESUMO

With no lysine/K kinases (WNKs) promote vasocontraction and vascular smooth muscle cell proliferation. In the prostate, smooth muscle contraction and growth may be critical for the development and medical treatment of voiding symptoms in benign prostatic hyperplasia. Here, we examined the effects of isoform-specific WNK silencing and of the WNK inhibitor WNK463 on growth-related functions and contraction in prostate stromal cells, and in human prostate tissues. Impacts of WNK silencing by transfection of cultured stromal cells with isoform-specific siRNAs were qualitatively and quantitatively similar for each WNK isoform. Effects of silencing were largest on cell death (3-5 fold increase in annexin V-positive/7-AAD-positive cells), on proliferation rate, Ki-67 mRNA expression and actin organization (reduced around two-thirds). Contraction in matrix contraction assays and viability were reduced to a lower degree (approximately half), but again to a similar extent for each WNK isoform. Effects of silencing were quantitatively and qualitatively reproduced by 10 µM WNK463, while 1 µM still induced cell death and breakdown in actin organization, without affecting proliferation or viability. Using 500 nM and 10 µM, WNK463 partly inhibited neurogenic and U46619-induced contractions of human prostate tissues (around half), while inhibition of α1-adrenergic contractions (around half) was limited to 10 µM. All four WNK isoforms suppress cell death and promote proliferation in prostate stromal cells. WNK-driven contraction of stromal cells appears possible, even though to a limited extent. Outcomes of isoform-specific WNK silencing can be fully reproduced by WNK463, including inhibition of smooth muscle contraction in human prostate tissues, but require high concentrations.


Assuntos
Actinas , Próstata , Masculino , Humanos , Actinas/metabolismo , Contração Muscular/fisiologia , Células Estromais/metabolismo , Proliferação de Células , Isoformas de Proteínas/metabolismo
3.
J Vis Exp ; (205)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38587372

RESUMO

The lymphatic vasculature, now often referred to as "the third circulation," is located in many vital organ systems. A principal mechanical function of the lymphatic vasculature is to return fluid from extracellular spaces back to the central venous ducts. Lymph transport is mediated by spontaneous rhythmic contractions of lymph vessels (LVs). LV contractions are largely regulated by the cyclic rise and fall of cytosolic, free calcium ([Ca2+]i). This paper presents a method to concurrently calculate changes in absolute concentrations of [Ca2+]i and vessel contractility/rhythmicity in real time in isolated, pressurized LVs. Using isolated rat mesenteric LVs, we studied changes in [Ca2+]i and contractility/rhythmicity in response to drug addition. Isolated LVs were loaded with the ratiometric Ca2+-sensing indicator Fura-2AM, and video microscopy coupled with edge-detection software was used to capture [Ca2+]i and diameter measurements continuously in real time. The Fura-2AM signal from each LV was calibrated to the minimum and maximum signal for each vessel and used to calculate absolute [Ca2+]i. Diameter measurements were used to calculate contractile parameters (amplitude, end diastolic diameter, end systolic diameter, calculated flow) and rhythmicity (frequency, contraction time, relaxation time) and correlated with absolute [Ca2+]i measurements.


Assuntos
Cálcio , Vasos Linfáticos , Ratos , Animais , Vasos Linfáticos/fisiologia , Linfa , Contração Muscular/fisiologia
4.
J Biomech ; 167: 112089, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38608614

RESUMO

Skeletal muscles are complex structures with nonlinear constitutive properties. This complexity often requires finite element (FE) modeling to better understand muscle behavior and response to activation, especially the fiber strain distributions that can be difficult to measure in vivo. However, many FE muscle models designed to study fiber strain do not include force-velocity behavior. To investigate force-velocity property impact on strain distributions within skeletal muscle, we modified a muscle constitutive model with active and passive force-length properties to include force-velocity properties. We implemented the new constitutive model as a plugin for the FE software FEBio and applied it to four geometries: 1) a single element, 2) a multiple-element model representing a single fiber, 3) a model of tapering fibers, and 4) a model representing the bicep femoris long head (BFLH) morphology. Maximum fiber velocity and boundary conditions of the finite element models were varied to test their influence on fiber strain distribution. We found that force-velocity properties in the constitutive model behaved as expected for the single element and multi-element conditions. In the tapered fiber models, fiber strain distributions were impacted by changes in maximum fiber velocity; the range of strains increased with maximum fiber velocity, which was most noted in isometric contraction simulations. In the BFLH model, maximum fiber velocity had minimal impact on strain distributions, even in the context of sprinting. Taken together, the combination of muscle model geometry, activation, and displacement parameters play a critical part in determining the magnitude of impact of force-velocity on strain distribution.


Assuntos
Músculos Isquiossurais , Contração Muscular , Contração Muscular/fisiologia , Simulação por Computador , Músculo Esquelético/fisiologia , Contração Isométrica/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Modelos Biológicos
5.
J Physiol Sci ; 74(1): 25, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622533

RESUMO

The purpose of this study was the detection and characterization of synergistic muscle activity. Using T2-map MRI, T2 values for 10 forearm muscles in 11 healthy adult volunteers were obtained in the resting state and after isotonic forearm supination and pronation exercises with the elbow extended. T2 was normalized by Z = (T2e-T2r)/SDr, where T2e was T2 after exercise, while T2r and SDr were the reference values of 34 ms and 3 ms, respectively. Using the cumulative frequency curves of Z values (CFZ), we detected 2 and 3 synergistic muscles for supination and pronation, respectively, and divided these into 2 types, one activated by exercise strength dependently, and the other, independent of exercise strength, activated by only a smaller fraction of the participants. We also detected co-contraction for the supination. Thus, CFZ is a useful visualization tool to detect and characterize not only synergistic muscle, but also co-contraction muscle.


Assuntos
Antebraço , Músculo Esquelético , Adulto , Humanos , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiologia , Cotovelo/fisiologia , Contração Muscular/fisiologia , Imageamento por Ressonância Magnética
6.
J Physiol Sci ; 74(1): 24, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600445

RESUMO

Actin linked regulatory mechanisms are known to contribute contraction/relaxation in smooth muscle. In order to clarify whether modulation of polymerization/depolymerization of actin filaments affects relaxation process, we examined the effects of cytochalasin D on relaxation process by Ca2+ removal after Ca2+-induced contraction of ß-escin skinned (cell membrane permeabilized) taenia cecum and carotid artery preparations from guinea pigs. Cytochalasin D, an inhibitor of actin polymerization, significantly suppressed the force during relaxation both in skinned taenia cecum and carotid artery. The data fitting analysis of the relaxation processes indicates that cytochalasin D accelerates slow (latch-like) bridge dissociation. Cytochalasin D seems to directly disrupts actin filament organization or its length, resulting in modulation of actin filament structure that prevents myosin binding.


Assuntos
Actinas , Contração Muscular , Cobaias , Animais , Contração Muscular/fisiologia , Actinas/metabolismo , Citocalasina D/farmacologia , Citocalasina D/metabolismo , Ceco/metabolismo , Artérias Carótidas/metabolismo , Cálcio/metabolismo
7.
Sci Rep ; 14(1): 9063, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643221

RESUMO

Vaginal laxity (VL) is a common condition among multiparous women, especially those who have delivered vaginally. Since pelvic floor muscles (PFMs) work synergistically with other core muscles, physical therapy protocols that aim to treat VL should train the PFMs in combination with other core muscles. To investigate the activity of core muscles in multiparous women with and without VL, and its relation to sexual function. An observational, cross-sectional study. The study included 100 multiparous women, who were divided into two groups according to their scores on the vaginal laxity questionnaire (VLQ). Women who scored between 1 and 3 on the VLQ were categorized as having VL (n = 48), while those who scored between 5 and 7 were placed in the control group (n = 52). The primary outcomes were PFM displacement, diaphragmatic excursion, transversus abdominis activation ratio, and lumbar multifidus thickness measured by ultrasound imaging. The secondary outcome was sexual functioning, evaluated using the Arabic female sexual function index (ArFSFI). The VL group had significantly lower PFM displacement (mean difference (MD) - 0.42; 95% confidence interval (CI) - 0.49 to - 0.33; p = 0.001), diaphragmatic excursion (MD - 2.75; 95% CI - 2.95 to - 2.55; p = 0.001), lumbar multifidus thickness (MD - 10.08; 95% CI - 14.32 to - 5.82; p = 0.02), and ArFSFI scores (MD - 9.2; 95% CI - 10.59 to - 7.81; p = 0.001) in comparison to the control group (p < 0.05). Nevertheless, the transversus abdominis activation ratio demonstrated no significant difference between the two groups (MD 0.06; 95% CI - 0.05 to 0.17; p = 0.33). Multiparous women with VL had significantly lower PFM displacement, diaphragmatic excursion, lumbar multifidus thickness, and sexual function index scores than women in the control group. The only exception was transversus abdominis activation, which did not differ significantly between the VL and control groups.


Assuntos
Músculos Abdominais , Diafragma da Pelve , Gravidez , Humanos , Feminino , Estudos Transversais , Diafragma da Pelve/fisiologia , Músculos Abdominais/diagnóstico por imagem , Músculos Abdominais/fisiologia , Contração Muscular/fisiologia , Paridade , Ultrassonografia/métodos
8.
J Exp Biol ; 227(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38563308

RESUMO

Vocalisations play a key role in the communication behaviour of many vertebrates. Vocal production requires extremely precise motor control, which is executed by superfast vocal muscles that can operate at cycle frequencies over 100 Hz and up to 250 Hz. The mechanical performance of these muscles has been quantified with isometric performance and the workloop technique, but owing to methodological limitations we lack a key muscle property characterising muscle performance, the force-velocity relationship. Here, we quantified the force-velocity relationship in zebra finch superfast syringeal muscles using the isovelocity technique and tested whether the maximal shortening velocity is different between males and females. We show that syringeal muscles exhibit high maximal shortening velocities of 25L0 s-1 at 30°C. Using Q10-based extrapolation, we estimate they can reach 37-42L0 s-1 on average at body temperature, exceeding other vocal and non-avian skeletal muscles. The increased speed does not adequately compensate for reduced force, which results in low power output. This further highlights the importance of high-frequency operation in these muscles. Furthermore, we show that isometric properties positively correlate with maximal shortening velocities. Although male and female muscles differ in isometric force development rates, maximal shortening velocity is not sex dependent. We also show that cyclical methods to measure force-length properties used in laryngeal studies give the same result as conventional stepwise methodologies, suggesting either approach is appropriate. We argue that vocal behaviour may be affected by the high thermal dependence of superfast vocal muscle performance.


Assuntos
Tentilhões , Laringe , Animais , Feminino , Masculino , Músculo Esquelético/fisiologia , Tentilhões/fisiologia , Contração Muscular/fisiologia
9.
BMC Womens Health ; 24(1): 219, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575899

RESUMO

INTRODUCTION: Non-invasive biofeedback of pelvic floor muscle training (PFMT) is required for continuous training in home care. Therefore, we considered self-performed ultrasound (US) in adult women with a handheld US device applied to the bladder. However, US images are difficult to read and require assistance when using US at home. In this study, we aimed to develop an algorithm for the automatic evaluation of pelvic floor muscle (PFM) contraction using self-performed bladder US videos to verify whether it is possible to automatically determine PFM contraction from US videos. METHODS: Women aged ≥ 20 years were recruited from the outpatient Urology and Gynecology departments of a general hospital or through snowball sampling. The researcher supported the participants in their self-performed bladder US and videos were obtained several times during PFMT. The US videos obtained were used to develop an automatic evaluation algorithm. Supervised machine learning was then performed using expert PFM contraction classifications as ground truth data. Time-series features were generated from the x- and y-coordinate values of the bladder area including the bladder base. The final model was evaluated for accuracy, area under the curve (AUC), recall, precision, and F1. The contribution of each feature variable to the classification ability of the model was estimated. RESULTS: The 1144 videos obtained from 56 participants were analyzed. We split the data into training and test sets with 7894 time series features. A light gradient boosting machine model (Light GBM) was selected, and the final model resulted in an accuracy of 0.73, AUC = 0.91, recall = 0.66, precision = 0.73, and F1 = 0.73. Movement of the y-coordinate of the bladder base was shown as the most important. CONCLUSION: This study showed that automated classification of PFM contraction from self-performed US videos is possible with high accuracy.


Assuntos
Contração Muscular , Diafragma da Pelve , Adulto , Feminino , Humanos , Diafragma da Pelve/diagnóstico por imagem , Diafragma da Pelve/fisiologia , Contração Muscular/fisiologia , Bexiga Urinária/diagnóstico por imagem , Biorretroalimentação Psicológica/métodos , Ultrassonografia
10.
J Neuroeng Rehabil ; 21(1): 47, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575926

RESUMO

Decoding movement intentions from motor unit (MU) activities to represent neural drive information plays a central role in establishing neural interfaces, but there remains a great challenge for obtaining precise MU activities during sustained muscle contractions. In this paper, we presented an online muscle force prediction method driven by individual MU activities that were decomposed from prolonged surface electromyogram (SEMG) signals in real time. In the training stage of the proposed method, a set of separation vectors was initialized for decomposing MU activities. After transferring each decomposed MU activity into a twitch force train according to its action potential waveform, a neural network was designed and trained for predicting muscle force. In the subsequent online stage, a practical double-thread-parallel algorithm was developed. One frontend thread predicted the muscle force in real time utilizing the trained network and the other backend thread simultaneously updated the separation vectors. To assess the performance of the proposed method, SEMG signals were recorded from the abductor pollicis brevis muscles of eight subjects and the contraction force was simultaneously collected. With the update procedure in the backend thread, the force prediction performance of the proposed method was significantly improved in terms of lower root mean square deviation (RMSD) of around 10% and higher fitness (R2) of around 0.90, outperforming two conventional methods. This study provides a promising technique for real-time myoelectric applications in movement control and health.


Assuntos
Contração Muscular , Músculo Esquelético , Humanos , Eletromiografia/métodos , Músculo Esquelético/fisiologia , Contração Muscular/fisiologia , Potenciais de Ação , Redes Neurais de Computação
11.
Sensors (Basel) ; 24(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38474893

RESUMO

(1) Background: Pelvic-floor-muscle (PFM) activation acts synergistically with multiple muscles while performing functional actions in humans. The purpose of this study was to characterize the activity of the PFMs and gluteus medius (GM) while walking and running in physically active nulliparous females. (2) Methods: The peak and average amplitude of maximal voluntary contractions (MVCs) during 60 s of walking (5 and 7 km/h) and running (9 and 11 km/h) were measured with electromyography of the GM and PFMs in 10 healthy female runners. (3) Results: The activation of both muscles increased (p < 0.001) while walking and running. The MVC of the GM was reached when walking and tripled when running, while the PFMs were activated at half their MVC when running. The global ratio of the GM (75.3%) was predominant over that of the PFMs (24.6%) while static and walking. The ratio reached 9/1 (GM/PFM) while running. (4) Conclusion: The GM and PFMs were active while walking and running. The GM's MVC tripled at high speeds, while the PFMs reached only half of their maximum contraction.


Assuntos
Diafragma da Pelve , Corrida , Feminino , Humanos , Diafragma da Pelve/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Eletromiografia , Caminhada
12.
J Appl Physiol (1985) ; 136(4): 954-965, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38482578

RESUMO

Whether eccentric exercise involves active fascicle stretch is unclear due to muscle-tendon unit (MTU) series compliance. Therefore, this study investigated the impact of changing the activation timing and level (i.e., preactivation) of the contraction on muscle fascicle kinematics and kinetics of the human tibialis anterior during dynamometer-controlled maximal voluntary MTU-stretch-hold contractions. B-mode ultrasound and surface electromyography were used to assess muscle fascicle kinematics and muscle activity levels, respectively. Although joint kinematics were similar among MTU-stretch-hold contractions (∼40° rotation amplitude), increasing preactivation increased fascicle shortening and stretch amplitudes (9.9-23.2 mm, P ≤ 0.015). This led to increasing positive and negative fascicle work with increasing preactivation. Despite significantly different fascicle kinematics, similar peak fascicle forces during stretch occurred at similar fascicle lengths and joint angles regardless of preactivation. Similarly, residual force enhancement (rFE) following MTU stretch was not significantly affected (6.5-7.6%, P = 0.559) by preactivation, but rFE was strongly correlated with peak fascicle force during stretch (rrm = 0.62, P = 0.003). These findings highlight that apparent eccentric exercise causes shortening-stretch contractions at the fascicle level rather than isolated eccentric contractions. The constant rFE despite different fascicle kinematics and kinetics suggests that a passive element was engaged at a common muscle length among conditions (e.g., optimal fascicle length). Although it remains unclear whether different fascicle mechanics trigger different adaptations to eccentric exercise, this study emphasizes the need to consider MTU series compliance to better understand the mechanical drivers of adaptation to exercise.NEW & NOTEWORTHY Apparent eccentric exercises do not result in isolated eccentric contractions, but shortening-stretch contractions at the fascicle level. The amount of fascicle shortening and stretch depends on the preactivation during the exercise and cannot be estimated from the muscle-tendon unit (MTU) or joint kinematics. As different fascicle mechanics might trigger different adaptations to eccentric exercise, muscle-tendon unit series compliance and muscle preactivation need to be considered when eccentric exercise protocols are designed.


Assuntos
Músculo Esquelético , Tendões , Humanos , Músculo Esquelético/fisiologia , Tendões/fisiologia , Contração Muscular/fisiologia , Eletromiografia , Exercício Físico , Contração Isométrica/fisiologia
13.
PeerJ ; 12: e17049, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510545

RESUMO

Background: The study aimed to examine alterations and imbalances in hamstring muscle contractile properties among young football players throughout their competitive season, and to understand how these changes might contribute to the risk of muscle injuries. Hamstring injuries are particularly common in football, yet the underlying causes and effective prevention methods remain unclear. Methods: The research involved 74 young footballers who were assessed before the season (pre-test) and after 12 weeks of training (post-test). To evaluate changes in hamstring muscle contractile properties, specifically the left and right biceps femoris (BF) and semitendinosus (ST), tensiomyography (TMG) parameters were utilized. Results: In comparison to the BF muscle, significant differences in time delay (Td) between the left and right sides in the post-test (p = 0.0193), and maximal displacement (Dm) between the left and right sides at the pre-test (p = 0.0395). However, significant differences in Dm were observed only in the left ST muscle between the pre- and post-tests (p = 0.0081). Regarding lateral symmetry, BF registered measurements of 79.7 ± 13.43 (pre-test) and 77.4 ± 14.82 (post-test), whereas ST showed measurements of 87.0 ± 9.79 (pre-test) and 87.5 ± 9.60 (post-test). Conclusions: These assessments provided TMG reference data for hamstring muscles in young footballers, both before the season and after 12 weeks of in-season training. The observed changes in the contractile properties and decrease in lateral symmetry of the BF in both tests suggest an increased risk of injury.


Assuntos
Músculos Isquiossurais , Futebol , Contração Muscular/fisiologia , Músculo Esquelético/lesões , Estações do Ano , Futebol/lesões
14.
J Physiol ; 602(7): 1297-1311, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493355

RESUMO

The wide variation in muscle fibre type distribution across individuals, along with the very different energy consumption rates in slow versus fast muscle fibres, suggests that muscle fibre typology contributes to inter-individual differences in metabolic rate during exercise. However, this has been hard to demonstrate due to the gap between a single muscle fibre and full-body exercises. We investigated the isolated effect of triceps surae muscle contraction velocity on whole-body metabolic rate during cyclic contractions in individuals a priori selected for their predominantly slow (n = 11) or fast (n = 10) muscle fibre typology by means of proton magnetic resonance spectroscopy (1H-MRS). Subsequently, we examined their whole-body metabolic rate during walking and running at 2 m/s, exercises with comparable metabolic rates but distinct triceps surae muscle force and velocity demands (walking: low force, high velocity; running: high force, low velocity). Increasing triceps surae contraction velocity during cyclic contractions elevated net whole-body metabolic rate for both typology groups. However, the slow group consumed substantially less net metabolic energy at the slowest contraction velocity, but the metabolic difference between groups diminished at faster velocities. Consistent with the more economic force production during slow contractions, the slow group exhibited lower metabolic rates than the fast group while running, whereas metabolic rates were similar during walking. These findings provide important insights into the influence of muscle fibre typology on whole-body metabolic rate and emphasize the importance of considering muscle mechanical demands to understand muscle fibre typology related differences in whole-body metabolic rates. KEY POINTS: Muscle fibre typology is often suggested to affect whole-body metabolic rate, yet convincing in vivo evidence is lacking. Using isolated plantar flexor muscle contractions in individuals a priori selected for their predominantly slow or fast muscle fibre typology, we demonstrated that having predominantly slow muscle fibres provides a metabolic advantage during slow muscle contractions, but this benefit disappeared at faster contractions. We extended these results to full-body exercises, where we demonstrated that higher proportions of slow fibres associated with better economy during running but not when walking. These findings provide important insights into the influence of muscle fibre typology on whole-body metabolic rate and emphasize the importance of considering muscle mechanical demands to understand muscle fibre typology related differences in whole-body metabolic rate.


Assuntos
Contração Muscular , Corrida , Humanos , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Fibras Musculares Esqueléticas , Perna (Membro) , Corrida/fisiologia
15.
J Physiol ; 602(7): 1385-1404, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513002

RESUMO

The purpose of our study was to investigate the influence of a stretch intervention on the common modulation of discharge rate among motor units in the calf muscles during a submaximal isometric contraction. The current report comprises a computational analysis of a motor unit dataset that we published previously (Mazzo et al., 2021). Motor unit activity was recorded from the three main plantar flexor muscles while participants performed an isometric contraction at 10% of the maximal voluntary contraction force before and after each of two interventions. The interventions were a control task (standing balance) and static stretching of the plantar flexor muscles. A factorization analysis on the smoothed discharge rates of the motor units from all three muscles yielded three modes that were independent of the individual muscles. The composition of the modes was not changed by the standing-balance task, whereas the stretching exercise reduced the average correlation in the second mode and increased it in the third mode. A centroid analysis on the correlation values showed that most motor units were associated with two or three modes, which were presumed to indicate shared synaptic inputs. The percentage of motor units adjacent to the seven centroids changed after both interventions: Control intervention, mode 1 decreased and the shared mode 1 + 2 increased; stretch intervention, shared modes either decreased (1 + 2) or increased (1 + 3). These findings indicate that the neuromuscular adjustments during both interventions were sufficient to change the motor unit modes when the same task was performed after each intervention. KEY POINTS: Based on covariation of the discharge rates of motor units in the calf muscles during a submaximal isometric contraction, factor analysis was used to assign the correlated discharge trains to three motor unit modes. The motor unit modes were determined from the combined set of all identified motor units across the three muscles before and after each participant performed a control and a stretch intervention. The composition of the motor unit modes changed after the stretching exercise, but not after the control task (standing balance). A centroid analysis on the distribution of correlation values found that most motor units were associated with a shared centroid and this distribution, presumably reflecting shared synaptic input, changed after both interventions. Our results demonstrate how the distribution of multiple common synaptic inputs to the motor neurons innervating the plantar flexor muscles changes after a brief series of stretches.


Assuntos
Contração Isométrica , Músculo Esquelético , Humanos , Contração Isométrica/fisiologia , Eletromiografia/métodos , Músculo Esquelético/fisiologia , Perna (Membro)/fisiologia , Neurônios Motores/fisiologia , Contração Muscular/fisiologia
16.
Sci Adv ; 10(11): eadk1890, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38478604

RESUMO

Muscle contraction is a regulated process driven by the sliding of actin-thin filaments over myosin-thick filaments. Lmod2 is an actin filament length regulator and essential for life since human mutations and complete loss of Lmod2 in mice lead to dilated cardiomyopathy and death. To study the little-known role of Lmod2 in skeletal muscle, we created a mouse model with Lmod2 expressed exclusively in the heart but absent in skeletal muscle. Loss of Lmod2 in skeletal muscle results in decreased force production in fast- and slow-twitch muscles. Soleus muscle from rescued Lmod2 knockout mice have shorter thin filaments, increased Lmod3 levels, and present with a myosin fiber type switch from fast myosin heavy chain (MHC) IIA to the slower MHC I isoform. Since Lmod2 regulates thin-filament length in slow-twitch but not fast-twitch skeletal muscle and force deficits were observed in both muscle types, this work demonstrates that Lmod2 regulates skeletal muscle contraction, independent of its role in thin-filament length regulation.


Assuntos
Contração Muscular , Sarcômeros , Animais , Humanos , Camundongos , Proteínas do Citoesqueleto/genética , Coração , Camundongos Knockout , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Miosinas
17.
Sensors (Basel) ; 24(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38474961

RESUMO

This study investigated the impact of auditory stimuli on muscular activation patterns using wearable surface electromyography (EMG) sensors. Employing four key muscles (Sternocleidomastoid Muscle (SCM), Cervical Erector Muscle (CEM), Quadricep Muscles (QMs), and Tibialis Muscle (TM)) and time domain features, we differentiated the effects of four interventions: silence, music, positive reinforcement, and negative reinforcement. The results demonstrated distinct muscle responses to the interventions, with the SCM and CEM being the most sensitive to changes and the TM being the most active and stimulus dependent. Post hoc analyses revealed significant intervention-specific activations in the CEM and TM for specific time points and intervention pairs, suggesting dynamic modulation and time-dependent integration. Multi-feature analysis identified both statistical and Hjorth features as potent discriminators, reflecting diverse adaptations in muscle recruitment, activation intensity, control, and signal dynamics. These features hold promise as potential biomarkers for monitoring muscle function in various clinical and research applications. Finally, muscle-specific Random Forest classification achieved the highest accuracy and Area Under the ROC Curve for the TM, indicating its potential for differentiating interventions with high precision. This study paves the way for personalized neuroadaptive interventions in rehabilitation, sports science, ergonomics, and healthcare by exploiting the diverse and dynamic landscape of muscle responses to auditory stimuli.


Assuntos
Contração Muscular , Dispositivos Eletrônicos Vestíveis , Contração Muscular/fisiologia , Intervenção Psicossocial , Eletromiografia , Músculos do Pescoço/fisiologia
18.
Biofabrication ; 16(2)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38447227

RESUMO

Engineered muscle fibers are attracting interest in bio-actuator research as they can contribute to the fabrication of actuators with a high power/size ratio for micro-robots. These fibers require to be stretched during culture for functional regulation as actuators and require a fixation on a rigid substrate for stretching in culture and evaluation of mechanical properties, such as Young's modulus and contraction force. However, the conventional fixation methods for muscle fibers have many restrictions as they are not repeatable and the connection between fixation part and the muscle fibers detaches during culture; therefore, the fixation becomes weak during culture, and direct measurement of the muscle fibers' mechanical properties by a force sensor is difficult. Therefore, we propose a facile and repeatable fixation method for muscle fibers by mixing magnetite nanoparticles at both ends of the muscle fibers to fabricate magnetic ends. The fiber can be easily attached and detached repeatedly by manipulating a magnet that applies a magnetic force larger than 3 mN to the magnetic ends. Thus, the muscle fiber can be stretched fiber during culture for functional regulation, transported between the culture dish and measurement system, and directly connected to the force sensor for measurement with magnetic ends. The muscle fiber connected with magnetic ends have a long lifetime (∼4 weeks) and the cells inside had the morphology of a skeletal muscle. Moreover, the muscle fiber showed a contraction (specific force of 1.02 mN mm-2) synchronized with electrical stimulation, confirming the muscle fiber fabricated and cultured using our method had similar morphology and function as bio-actuators in previous research. This research demonstrates the advantages of the fixation method using muscle fibers with magnetic ends; the fibers are stretched during culture, and the transportation and force measurement of weak and tiny muscle fibers could be finished in 1 min.


Assuntos
Contração Muscular , Fibras Musculares Esqueléticas , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Fenômenos Mecânicos , Fenômenos Magnéticos
19.
J Electromyogr Kinesiol ; 75: 102872, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458102

RESUMO

The number of motor units included in calculations of mean firing rates varies widely in the literature. It is unknown how the number of decomposed motor units included in the calculation of firing rate per participant compares to the total number of active motor units in the muscle, and if this is different for males and females. Bootstrapped distributions and confidence intervals (CI) of mean motor unit firing rates decomposed from the tibialis anterior were used to represent the total number of active motor units for individual participants in trials from 20 to 100 % of maximal voluntary contraction. Bootstrapped distributions of mean firing rates were constructed using different numbers of motor units, from one to the maximum number for each participant, and compared to the CIs. A probability measure for each number of motor units involved in firing rate was calculated and then averaged across all individuals. Motor unit numbers required for similar levels of probability increased as contraction intensity increased (p < 0.001). Increased levels of probability also required higher numbers of motor units (p < 0.001). There was no effect of sex (p ≥ 0.97) for any comparison. This methodology should be repeated in other muscles, and aged populations.


Assuntos
Contração Muscular , Músculo Esquelético , Masculino , Feminino , Humanos , Idoso , Músculo Esquelético/fisiologia , Contração Muscular/fisiologia , Neurônios Motores/fisiologia , Recrutamento Neurofisiológico/fisiologia , Eletromiografia , Contração Isométrica/fisiologia
20.
Sci Adv ; 10(12): eadl1126, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38507485

RESUMO

Excitation-contraction coupling (ECC) is a fundamental mechanism in control of skeletal muscle contraction and occurs at triad junctions, where dihydropyridine receptors (DHPRs) on transverse tubules sense excitation signals and then cause calcium release from the sarcoplasmic reticulum via coupling to type 1 ryanodine receptors (RyR1s), inducing the subsequent contraction of muscle filaments. However, the molecular mechanism remains unclear due to the lack of structural details. Here, we explored the architecture of triad junction by cryo-electron tomography, solved the in situ structure of RyR1 in complex with FKBP12 and calmodulin with the resolution of 16.7 Angstrom, and found the intact RyR1-DHPR supercomplex. RyR1s arrange into two rows on the terminal cisternae membrane by forming right-hand corner-to-corner contacts, and tetrads of DHPRs bind to RyR1s in an alternating manner, forming another two rows on the transverse tubule membrane. This unique arrangement is important for synergistic calcium release and provides direct evidence of physical coupling in ECC.


Assuntos
Cálcio , Canal de Liberação de Cálcio do Receptor de Rianodina , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Cálcio/metabolismo , Músculo Esquelético/metabolismo , Canais de Cálcio Tipo L/análise , Canais de Cálcio Tipo L/metabolismo , Retículo Sarcoplasmático/metabolismo , Contração Muscular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...